
DAT159

Module3 – Blockchain technology

L17 - Bitcoin Mechanics 2

Lars-Petter Helland, 16.10.2018

Today

› Recap of last lecture

› Signing a transaction

› Validating a transaction

› Locking and unlocking scripts

› Collecting transactions into a block

› Merkle trees and -root

› Simplified Payment Verification (SPV)

› Validating new blocks

Reading material

› [AA Ch6] - Chapter 6 Transactions ... forts.

› [AA Ch6] - Chapter 9 The Blockchain from Antonopoulos, Andreas M..

Mastering Bitcoin: Programming the Open Blockchain

[Some of the text in this presentation is taken directly from this book]

› [NA Ch3] - Chapter 3 Mechanics of Bitcoin from Narayanan, Arvind.

Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction.

Recap of last lecture

› The accounting model

› Outputs

› Inputs

› Transactions

› Coinbase transaction

› The UTXO-set

› Wallet software

Signing a transaction

› A Bitcoin transaction is signed using ECDSA

› A transaction contains many signatures, one per input. (Simplified in Oblig3)

› Each input is signed using the private key for the corresponding output.

› The message that is signed is "the entire" transaction (a hash/fingerprint of all the

important information)

› By doing it like this, we ensure that (for each input):

› The owner of the input (referenced output) is authenticated (only he knows

the private key belonging to the output address)

› We can verify that the owner agrees to spend the inputs as described in the

list of outputs (the message that is signed can not be modified)

Just to refresh: Creating and verifying a signature

Validating transactions

› End users (like you and me) create the transactions with wallet

software. The transactions are then sent to the Bitcoin network for

processing.

› The network nodes must validate all incoming transactions to make

sure that money are spent correctly.

› We will list some of the things network nodes must check for in every

transaction.

Transaction validation checklist (simplified)

› The transaction’s syntax and data structure must be correct.

› Neither lists of inputs or outputs are empty.

› Each output value, as well as the total, must be within the allowed range of values
(less than 21m coins, more than the dust threshold).

› For each input, if the referenced output exists in any other transaction in the pool,
the transaction must be rejected.

› For each input, the referenced output must exist and cannot already be spent.

› Using the referenced output transactions to get input values, check that each input
value, as well as the sum, are in the allowed range of values (less than 21m coins,
more than 0).

› Reject if the sum of input values is less than sum of output values.

› The unlocking scripts for each input must validate against the corresponding
output locking scripts.

Locking and unlocking scripts

› I have been "lying" a little bit about how the spending of outputs is secured

by providing a signature for the transaction (or for the inputs).

› I told you that:

› An output contains an address (linked to the public key)

› An input contains a signature (+ a public key for verification)

› The transaction represents the message that is signed

› Verification is done by:

1. Matching the public key with the address of the referenced output

2. Checking that the signature is valid

› In real life, it is actually a little more complicated ...

Locking and unlocking scripts

› The truth:

› An output contains an locking script (most often

containing a hash of the public key)

› An input contains a unlocking script (most often

containing a signature and a public key)

› The script language in Bitcoin is called Script, and is a

stack based language. (Similar to Forth, or RPN used on

calculators like HP-15C)

› The scripts (unlocking+locking) are run together as a

one script

› We must look at how it works.

Locking and unlocking scripts

› The top script is a typical

example of a locking script

(located in an Output). The

<PubKHash> is a hash of

the public key, similar to the

address.

› The bottom script is a

corresponding unlocking

script (located in an Input).

The <sig> is the provided

signature, and the <PubK> is

the public key.

A simple Script example

2 3 OP_ADD 5 OP_EQUAL

› How is this evaluated, and what is the result?

› 2 is pushed on the stack. Stack: 2

› 3 is pushed on the stack. Stack: 2 3

› OP_ADD removes the top two, adds, and pushes the result. Stack: 5

› 5 is pushed on the stack. Stack: 5 5

› OP_EQUAL removes the top two, compares, and pushes ... Stack: TRUE (=1)

› Script was run successfully with TRUE as the result!

Another Script example (unlocking + locking)

<MySignature> <MyPublicKey> OP_DUP OP_HASH160

<MyPublicKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Execution:

<MySignature> ---> <MySignature>

<MyPublicKey> ---> <MySignature> <MyPublicKey>

OP_DUP ---> <MySignature> <MyPublicKey> <MyPublicKey>

OP_HASH160 ---> <MySignature> <MyPublicKey> Hash(<MyPublicKey>)

<MyPubl...> ---> <MySignature> <MyPublicKey> Hash(<MyPublicKey>) <MyPublicKeyHash>

OP_EQUALVERIFY ---> <MySignature> <MyPublicKey>

OP_CHECKSIG ---> TRUE

After I did the previous slide, of course I found

› A much nicer presentation of the stack:

Locking and unlocking scripts

› The example we saw is called a Pay-to-Public-Key-Hash or “P2PKH” script.

› It is by far the most common script.

› Verification was done by:

1. Matching the public key with the "address" from the referenced output

2. Checking that the signature is valid

› Exactly like I told you :)

› But using a script language for locking and unlocking outputs opens up for

more sophisticated ways of spending the money, f.ex.:

› Multisignature scripts

› Escrow transactions

› Smart contracts

Collecting transactions into a block

› Now, we will look more in detail on how a Bitcoin block looks like

› We know from the introductory video that a block contains a prev, a nonce,

some data, and a hash.

› In Bitcoin, the data consists of all the transactions, maybe more that a

thousand transactions in a block.

› How are they stored, and how do we keep track of all the transactions in an

efficient way?

› (The blockchain can be stored as a flat file, or in a simple database. The

Bitcoin Core client stores the blockchain metadata using Google’s LevelDB

database.)

The structure of a Bitcoin block

› Due to the amount of data, a block is divided into a block header, and a block

body. The block header contains a summary of what is in the block:

› Previous Block Hash (as before)

› Difficulty (related to mining)

› Timestamp (related to mining)

› Nonce (as before)

› Merkle tree root (a "summary" of all the transactions)

› The block body stores all the transactions

› Not stored directly, but kept for lookup by nodes:

› Block Hash !!! (the hash of the block header, the unique identifier)

› Block Height (the block number in the the chain, starting with 0)

› So, what is this Merkle tree root?

Merkle trees

› A Merkle tree is a kind of binary tree that
uses hash pointers. The nodes contain
the hash values of the hashes of its
children.

› The root is a "fingerprint" of all the data
used for the leaf nodes.

› In Bitcoin, in stead of basing the block
hash on all the transaction data (can be
much), it is based on the Merkle root of
the Merkle tree of transactions.

› It also enables fast verification of inclusion
or exclusion of a transaction in a block.

Calculating the nodes

A larger tree

Proving inclusion - Merkle path

Merkle tree efficiency

› Searching for inclusion is O(log(n))

› The table below shows clearly how efficient it is

Merkle tree summary

› A Merkle tree is a binary tree using hash pointers to "sum up" what is in the

input of all the leaf nodes.

› A Merkle (tree) root contains a combined fingerprint for all the leaf nodes.

› Properties:

› The root is a compact representation of a large amount of transactions

› If any of transactions are modified, added or removed, the Merkle root

will not be valid, and must be recalculated.

› Proving inclusion of a transaction i done in O(log(n)) time / space.

› Bitcoin blocks use the Merkle root as part of the (mined) block header.

Simplified Payment Verification (SPV)

› A lightweight node (like a mobile wallet) does not download full blocks, just

block headers.

› On request, it can download a Merkle path associated with a transaction

related to a specific address.

› The lightweight node can then:

› Use the Merkle path to verify that the transaction is in the block

› Use the Block header to link the block to the rest of the blockchain

› The amount of data needed for such a verification is typically 1kB, whereas

the data in a block is 1MB. So a thousand times less.

Summary of the Bitcoin block structure

› A block is divided into a block header, and a block body (containing the

transactions). The block header contains a summary of what is in the block:

› Previous Block Hash (as before)

› Difficulty (related to mining)

› Timestamp (related to mining)

› Nonce (as before)

› Merkle tree root (a "summary" of all the transactions)

› The block body stores all the transactions

› Not stored directly, but kept for lookup by nodes:

› Block Hash (the hash of the block header, the unique identifier)

› Block Height (the block number in the the chain, starting with 0)

Creating blocks - Mining

› Miners aggregate transactions into blocks and then "mines" the blocks.

› If a miner is successful in finding a nonce that makes the block hash match

(is less than) the mining target, the block is sent to the rest of the network to

be included in the blockchain.

› The network nodes will (as with incoming transactions) validate an

incoming block before it is added to the blockchain.

› The checklist for block validation includes the checklist for each transaction,

but there are more things to check.

Validating blocks and appending to the blockchain

› The block data structure is syntactically valid

› The block header hash is less than the target (enforces the Proof-of-Work)

› The header info, including the Merkle root, must calculate correctly

› There must not be duplicate transactions in the block

› No inputs must be included in more than one transaction

› The first transaction (and only the first) is a coinbase transaction

› The block size is within acceptable limits

› All transactions within the block are valid using the transaction checklist

discussed earlier

Bridging Lab1 and Lab2 ??? (if you have extra time)

› In Lab1 you saw how we can build a simple blockchain (top-down)

› In Lab2 you saw (will see) how you create valid transactions (bottom-up)

› What needs to be done to bridge the two?

› You need to define a slightly different block structure (including

transactions and the Merkle root)

› You need to implement a Merkle root calculation

› You need to implement proper block validation

Networking, API and applications

› The "elephant" in the room now is of course the networking part. So far, we

have only looked at a centralized solution running on one node.

› But we are out of time. :(

› If we had three more weeks, I think a goal could be to make a small simple

peer-to-peer-network and a DAT159Coin.

› And if we had another three more weeks, we could have made a simple

block explorer and a wallet. …..

Next

› Oblig3 ...

› Next week we will look other aspects of Blockchain Technology.

› Blockchain applications ++

› Smart contracts ++

